

Summary of Lecture 9

- In lecture 9 we learnt about the Gibbs phenomenon.
- We learnt edge detection with:
	- $-$ Gradient operators based on first derivatives and ass cal maxima.
	- $-$ Gradient operators based on second derivatives and zero crossings.
- We learnt about Mach bands and the low-pass nature of the visual system

Low-pass Response of the Human Visual Sys

• The human visual system low-pass filters the scenes under ol

© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brookly

"Perceptual" Image Processing

- The human visual system has a low-pass response, i.e., hur ing a certain image do not fully see some of the "details" that themselves at high frequencies.
- Note that low-pass filtering \sim averaging.
- We will take advantage of this by pushing certain processin high frequencies where humans cannot see them.
- Perceptual image processing assumes that the results of the will be viewed by humans. Processing techniques are gear this particular assumption.
- Perceptual image processing results are good for subjective ϵ and they are usually not good for objective evaluations (sud

Quantization and False Contours

We already know that coarse quantizers produce false contours in tized image which appear unpleasant to the human observer. Uniform Q. A=64 Lenna

© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brookly

Pseudo-random Noise Dithered Quantization c

- In regions of smoothly varying pixels we usually get false after coarse quantization.
- With noise dithered quantization, the additive noise causes portal values in these regions to go below or above the quantization thereby breaking the contours.
- A is chosen such that only the least significant bit is affed quantization.

Example

 $\textsf{Q}\ (\Delta \texttt{=32})$

$$
R(A=32)
$$

 \overline{P} (

Example

 $Q (\Delta = 64)$

 $\mathsf{P}\left($

Example

 $Q (\Delta = 128)$

Image Halftoning

- Some display devices like printers can only display black or w i.e., when an image is printed it undergoes very coarse quantization.
- \bullet These devices compensate for this limitation by having the display many pixels or "dots" in very small areas.
- The type of halftoning algorithms we are interested upsam age, add pseudo random noise and quantize the result to (i.e., obtain R using an upsampled image.) Please see the pages 120-122.

Image Warping and Special Effects

Let $A(i, j)$ be an image.

• In image warping our aim is to generate an image $B(k, l)$ f where

$$
B(k, l) = A(x(k), y(l))
$$

- We will call $x(\ldots)$ and $y(\ldots)$ the pixel warping functions.
- \bullet In the following slides we will generate images B from A usir warping functions.
- There are two special cases:
	- 1. $x(k), y(l)$ is out of the "boundaries" of A. In this case set $B(k, l) = 0$.
	- 2. One or both of $x(k), y(l)$ are not integers. In this case find the nearest two or four pixels in A , average the C ing pixel values to obtain $B(k, l)$. (We can also do round

Translation and Rotation

B translation

B rotation

Translation: $x(k, l) = k + 50; y(k, l) = l;$ Rotation: $x(k, l) = (k - x_0)cos(\theta) + (l - y_0)sin(\theta) + x_0;$ $y(k, l) = -(k - x_0)sin(\theta) + (l - y_0)cos(\theta) + y_0;$

 $x_0 = y_0 = 256.5$ the center of the image $\mathbf{A}, \theta = \pi/6$

"Wave"

wave 2

wave2:
$$
x(k, l) = k + 20sin(\frac{2\pi}{128}l); y(k, l) = l;
$$

wave2: $x(k, l) = k + 20sin(\frac{2\pi}{30}k); y(k, l) = l;$

"Warp" and "Swirl"

warp

\n
$$
\text{warp}: \quad x(k, l) = \frac{\sin((k - x_0)}{x_0 * (k - x_0)^2 + x_0}; \quad y(k, l) = l;
$$
\n

\n\n $\text{swirl}: \quad x(k, l) = (k - x_0)\cos(\theta) + (l - y_0)\sin(\theta) + x_0;$ \n

\n\n $\text{y}(k, l) = -(k - x_0)\sin(\theta) + (l - y_0)\cos(\theta) + y_0;$ \n

\n\n $r = ((k - x_0)^2 + (l - y_0)^2)^{1/2}, \quad \theta = \pi/512 \, r$ \n

 $x_0=y_0=256.5$ the center of the image ${\bf A}$

"Glass"

$$
x(k, l) = k + (rand(1, 1) - .5) * 10;
$$

$$
y(k, l) = l + (rand(1, 1) - .5) * 10;
$$

Median Filtering

Define the set $Z(i, j) = \{A(m, n)|i - W \le m \le i + W, j - W \le n \le j + \}$ $B(i,j) = median(Z(i,j)). \label{eq:1}$

Oil Painting

Define the set $Z(i, j) = \{A(m, n)|i - W \le m \le i + W, j - W \le n \le j + \}$ $B(i, j)$ = the most frequent value in $Z(i, j)$.

Homework X

- 1. Implement the pseudo random noise dithered quantizer with $\Delta = 32, 64, 128$. In each case try to choose the "best" possible noise parameter A.
- 2. Implement the warping functions for translation, rotation, wave, warp, swirl and glass. Try to use different parameters. My parameters x_0, y_0 , etc., are set for a 512×512 image.
- 3. Implement the median filter for your image. First randomly pick 4000 pixels and set their values to zero to obtain a pepper noise corrupted image. Then apply the median filter with $W = 3$. Repeat with 40000 pixels corrupted. What can you do to improve results now? (Hint: Try increasing W and/or running several iterations of the median filter.)

References

[1] A. K. Jain, Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.